

littlefs for Python

[image: Build Status: Linux]
 [https://travis-ci.org/jrast/littlefs-python][image: Build Status: Windows]
 [https://ci.appveyor.com/project/jrast/littlefs-python][image: Documentation Status]
 [https://littlefs-python.readthedocs.io/en/latest/?badge=latest][image: _images/littlefs-python1.svg]
 [https://badge.fury.io/py/littlefs-python]littlefs-python provides a thin wrapper around littlefs [https://github.com/littlefs-project/littlefs], a filesystem targeted for
small embedded systems.
The wrapper provides a pythonic interface to the filesystem and allows the creation,
inspection and modification of the filesystem or individual files.
Even if this package uses Cython [http://docs.cython.org/en/latest/index.html], the goal is not to provide a high performance
implementation. Cython was chosen as an easy method is offered to generate the binding
and the littlefs library in one step.

Quick Examples

Let’s create a image ready to transfer to a flash memory using the pythonic interface:

from littlefs import LittleFS

Initialize the File System according to your specifications
fs = LittleFS(block_size=512, block_count=256)

Open a file and write some content
with fs.open('first-file.txt', 'w') as fh:
 fh.write('Some text to begin with\n')

Dump the filesystem content to a file
with open('FlashMemory.bin', 'wb') as fh:
 fh.write(fs.context.buffer)

The same can be done by using the more verbose C-Style API, which closely resembles the
steps which must be performed in C:

from littlefs import lfs

cfg = lfs.LFSConfig(block_size=512, block_count=256)
fs = lfs.LFSFilesystem()

Format and mount the filesystem
lfs.format(fs, cfg)
lfs.mount(fs, cfg)

Open a file and write some content
fh = lfs.file_open(fs, 'first-file.txt', 'w') as fh:
lfs.file_write(fs, fh, b'Some text to begin with\n')
lfs.file_close(fs, fh)

Dump the filesystem content to a file
with open('FlashMemory.bin', 'wb') as fh:
 fh.write(cfg.user_context.buffer)

Installation

This is as simple as it can be:

pip install littlefs-python

At the moment wheels (which require no build) are provided for the following platforms,
on other platforms the source package is used and a compiler is required:

	Linux: Python 3.6 - 3.10 / 32- & 64-bit

	Windows: Python 3.6 - 3.10 / 32- & 64-bit

Development Setup

Start by checking out the source repository of littlefs-python:

git clone https://github.com/jrast/littlefs-python.git

The source code for littlefs is included as a submodule which must be
checked out after the clone:

cd <littlefs-python>
git submodule update --init

this ensures that the correct version of littlefs [https://github.com/littlefs-project/littlefs] is cloned into
the littlefs folder. As a next step install the dependencies and install
the package:

pip install -r requirements.txt
pip install -e .

Note

It’s highly recommended to install the package in a virtual environment!

Development Hints

	Test should be run before commiting: pytest test

	Mypy is used for typechecking. Run it also on the tests to catch more issues:
mypy src test test/lfs

	Mypy stubs can be generated with stubgen src. This will create a out direcotry
containing the generated stub files.

Creating a new release

	Make sure the master branch is in the state you want it.

	Create a tag with the new version number

	Wait until all builds are completed. A new release should be created
automatically on github.

	Build the source distribution with python setup.py sdist

	Download all assets (using ci/download_release_files.py)

	Upload to pypi using twine: twine upload dist/*

Contents

	Usage
	C-Style API

	Pythonic API

	Examples
	Preparing a filesystem on the PC

	Inspecting a filesystem image

	API Documentation
	littlefs module

	littlefs.context module

	littlefs.lfs module

Indices and tables

	Index

	Module Index

	Search Page

Usage

littlefs-python offers two interfaces to the underlying littlefs library:

	A C-Style API which exposes all functions from the library using a minimal
wrapper, written in Cython, to access the functions.

	A pythonic high-level API which offers convenient functions similiar to
the ones known from the os [https://docs.python.org/3/library/os.html#module-os] standard library module.

Both API’s can be mixed and matched if required.

C-Style API

The C-Style API tries to map functions from the C library to python with as little
intermediate logic as possible. The possibility to provide customized read(),
prog(), erase() and sync() functions to littlefs was a main goal
for the api.

All methods and relevant classes for this API are available in the littlefs.lfs
module. The methods where named the same as in the littlfs library, leaving out the lfs_
prefix. Because direct access to C structs is not possible from python, wrapper classes
are provided for the commonly used structs:

	LFSFilesystem is a wrapper around the lfs_t struct.

	LFSFile is a wrapper around the lfs_file_t struct.

	LFSDirectory is a wrapper around the lfs_dir_t struct.

	LFSConfig is a wrapper around the lfs_config_t struct.

All these wrappers have a _impl attribute which contains the actual data. Note that
this attribute is not accessible from python.
The LFSConfig class exposes most of the internal fields from the
_impl as properties to provide read access to the configuration.

Pythonic API

While the pythonic API is working for basic operations like reading and writing files,
creating and listing directories and some other functionality, it’s by no means finished.
Currently the usage is best explained in the Examples section.

Examples

Preparing a filesystem on the PC

In the following example shows how to prepare an image of a Flash / EEPROM
memory. The generated image can then be written to the memory by other
tools.

Start by creating a new filesystem:

>>> from littlefs import LittleFS
>>> fs = LittleFS(block_size=256, block_count=64)

It’s important to set the correct block_size and block_count during the
instantiation of the filesystem. The values you set here must match the settings which are
later used on the embedded system. The filesystem is automatically formatted and mounted 1
during instantiation. For example, if we look at the first few bytes of the underlying buffer,
we can see that the filesystem header was written:

>>> fs.context.buffer[:20]
bytearray(b'\x00\x00\x00\x00\xf0\x0f\xff\xf7littlefs/\xe0\x00\x10')

We can start right away by creating some files. Lets create a simple file containing some
Information about the hardware 2:

>>> with fs.open('hardware.txt', 'w') as fh:
... fh.write('BoardVersion:1234\n')
... fh.write('BoardSerial:001122\n')
18
19

File- and foldernames are encoded as ASCII. File handles of littlefs can be
used as normal file handles, using a context manager ensures that the file is
closed as soon as the with block is left.

Let’s create some more files in a configuration folder:

>>> fs.mkdir('/config')
0
>>> with fs.open('config/sensor', 'wb') as fh:
... fh.write(bytearray([0x01, 0x02, 0x05]))
3
>>> with fs.open('config/actor', 'wb') as fh:
... fh.write(bytearray([0xAA, 0xBB] * 100))
200

As we wan’t to place the files in a folder, the folder first needs to be created.
The filesystem does not know the concept of a working directory. The working directory
is allways assumed to be the root directory, therefore ./config, /config and
config have all the same meaning, use whatever you like the best.

A final check to see if all required files are on the filesystem before we dump the data
to a file:

>>> fs.listdir('/')
['config', 'hardware.txt']
>>> fs.listdir('/config')
['actor', 'sensor']

Everything ok? Ok, lets go and dump the filesystem to a binary file.
This file can be written/downloaded to the actual storage.

>>> with open('fs.bin', 'wb') as fh:
... fh.write(fs.context.buffer)
16384

Inspecting a filesystem image

Sometimes it’s necesary to inspect a filesystem which was previously in use
on a embedded system. Once the filesystem is available as an binary image, it’s easy
to inspect the content using littlefs-python.

In this example we will inspect the image created in the last example. We check if
the actor file is still the same as when the image was written.
We start again by creating a LittleFS instance. However, this
time we do not want to mount the filesystem immediateley because we need to load
the actual data into the buffer first.
After the buffer is initialized with the correct data, we can mount the filesystem.

>>> fs = LittleFS(block_size=256, block_count=64, mount=False)
>>> with open('fs.bin', 'rb') as fh:
... fs.context.buffer = bytearray(fh.read())
>>> fs.mount()
0

Let’s see whats on the filesystem:

>>> fs.listdir('/config')
['actor', 'sensor']

Ok, this seems to be fine. Let’s check if the actor file was modified:

>>> with fs.open('/config/actor', 'rb') as fh:
... data = fh.read()
>>> assert data == bytearray([0xAA, 0xBB] * 100)

Great, our memory contains the correct data!

Now it’s up to you! Play around with the data, try writing and reading other files,
create directories or play around with differnt block_size and block_count
arguments.

	1

	See littlefs.lfs.format() and littlefs.lfs.mount() for further details.

	2

	Ignore the output of the examples. These are the return values in which we are not
interested in almost all cases.

API Documentation

littlefs module

	
class littlefs.FileHandle(fs, fh)

	
	
close()

	Flush and close the IO object.

This method has no effect if the file is already closed.

	
flush()

	Flush write buffers, if applicable.

This is not implemented for read-only and non-blocking streams.

	
readable()

	Return whether object was opened for reading.

If False, read() will raise OSError.

	
readall()

	Read until EOF, using multiple read() call.

	
readinto(b)

	

	
seek(offset, whence=0)

	Change stream position.

Change the stream position to the given byte offset. The offset is
interpreted relative to the position indicated by whence. Values
for whence are:

	0 – start of stream (the default); offset should be zero or positive

	1 – current stream position; offset may be negative

	2 – end of stream; offset is usually negative

Return the new absolute position.

	
seekable()

	Return whether object supports random access.

If False, seek(), tell() and truncate() will raise OSError.
This method may need to do a test seek().

	
tell()

	Return current stream position.

	
truncate(size=None) → int

	Truncate file to size bytes.

File pointer is left unchanged. Size defaults to the current IO
position as reported by tell(). Returns the new size.

	
writable()

	Return whether object was opened for writing.

If False, write() will raise OSError.

	
write(data)

	

	
class littlefs.LittleFS(context: UserContext = None, **kwargs)

	Littlefs file system

	
context

	User context of the file system

	
format() → int

	Format the underlying buffer

	
listdir(path='.') → List[str]

	List directory content

List the content of a directory. This function uses scandir()
internally. Using scandir() might be better if you are
searching for a specific file or need access to the littlefs.lfs.LFSStat
of the files.

	
makedirs(name: str, exist_ok=False)

	Recursive directory creation function.

	
mkdir(path: str) → int

	Create a new directory

	
mount() → int

	Mount the underlying buffer

	
open(fname: str, mode='r', buffering: int = -1, encoding: str = None, errors: str = None, newline: str = None) → IO

	Open a file.

mode is an optional string that specifies the mode in which
the file is opened and is analogous to the built-in io.open() [https://docs.python.org/3/library/io.html#io.open]
function. Files opened in text mode (default) will take and return
str objects. Files opened in binary mode will take and return
byte-like objects.

	Parameters

	
	fname (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the file to open.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the mode in which the file is opened.

	buffering (int [https://docs.python.org/3/library/functions.html#int]) – Specifies the buffering policy. Pass 0 to disable buffering in
binary mode.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text encoding to use. (text mode only)

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies how encoding and decoding errors are to be handled. (text mode only)

	newline (str [https://docs.python.org/3/library/stdtypes.html#str]) – Controls how universal newlines mode works. (text mode only)

	
remove(path: str) → int

	Remove a file or directory

If the path to remove is a directory, the directory must be empty.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the file or directory to remove.

	
removedirs(name)

	Remove directories recursively

This works like remove() but if the leaf directory
is empty after the successfull removal of name, the
function tries to recursively remove all parent directories
which are also empty.

	
rename(src: str, dst: str) → int

	Rename a file or directory

	
rmdir(path: str) → int

	Remove a directory

This function is an alias for remove()

	
scandir(path='.') → Iterator[LFSStat]

	List directory content

	
stat(path: str) → LFSStat

	Get the status of a file or directory

	
unlink(path: str) → int

	Remove a file or directory

This function is an alias for remove().

	
walk(top: str) → Iterator[Tuple[str, List[str], List[str]]]

	Generate the file names in a directory tree

Generate the file and directory names in a directory tree by
walking the tree top-down. This functions closely resembels the
behaviour of os.stat() [https://docs.python.org/3/library/os.html#os.stat].

Each iteration yields a tuple containing three elements:

	The root of the currently processed element

	A list of directorys located in the root

	A list of filenames located in the root

littlefs.context module

	
class littlefs.context.UserContext(buffsize: int)

	Basic User Context Implementation

	
erase(cfg: LFSConfig, block: int) → int

	Erase a block

	Parameters

	
	cfg (LFSConfig) – Filesystem configuration object

	block (int [https://docs.python.org/3/library/functions.html#int]) – Block number to read

	
prog(cfg: LFSConfig, block: int, off: int, data: bytes) → int

	program data

	Parameters

	
	cfg (LFSConfig) – Filesystem configuration object

	block (int [https://docs.python.org/3/library/functions.html#int]) – Block number to program

	off (int [https://docs.python.org/3/library/functions.html#int]) – Offset from start of block

	data (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Data to write

	
read(cfg: LFSConfig, block: int, off: int, size: int) → bytearray

	read data

	Parameters

	
	cfg (LFSConfig) – Filesystem configuration object

	block (int [https://docs.python.org/3/library/functions.html#int]) – Block number to read

	off (int [https://docs.python.org/3/library/functions.html#int]) – Offset from start of block

	size (int [https://docs.python.org/3/library/functions.html#int]) – Number of bytes to read.

	
sync(cfg: LFSConfig) → int

	Sync cached data

	Parameters

	cfg (LFSConfig) – Filesystem configuration object

littlefs.lfs module

	
class littlefs.lfs.LFSStat

	Littlefs File / Directory status

	
name

	Alias for field number 2

	
size

	Alias for field number 1

	
type

	Alias for field number 0

	
class littlefs.lfs.LFSConfig(context=None, **kwargs)

	
	
block_count

	

	
block_size

	

	
cache_size

	

	
lookahead_size

	

	
prog_size

	

	
read_size

	

	
class littlefs.lfs.LFSDirectory

	

	
class littlefs.lfs.LFSFile

	
	
flags

	Mode flags of an open file

	
class littlefs.lfs.LFSFileFlag

	Littlefs file mode flags

	
append = 2048

	

	
creat = 256

	

	
excl = 512

	

	
rdonly = 1

	

	
rdwr = 3

	

	
trunc = 1024

	

	
wronly = 2

	

	
class littlefs.lfs.LFSFilesystem

	

	
littlefs.lfs.dir_close(LFSFilesystem fs, LFSDirectory dh)

	

	
littlefs.lfs.dir_open(LFSFilesystem fs, path)

	

	
littlefs.lfs.dir_read(LFSFilesystem fs, LFSDirectory dh)

	

	
littlefs.lfs.dir_rewind(LFSFilesystem fs, LFSDirectory dh)

	

	
littlefs.lfs.dir_tell(LFSFilesystem fs, LFSDirectory dh)

	

	
littlefs.lfs.file_close(LFSFilesystem fs, LFSFile fh)

	

	
littlefs.lfs.file_open(LFSFilesystem fs, path, flags)

	

	
littlefs.lfs.file_open_cfg(self, path, flags, config)

	

	
littlefs.lfs.file_read(LFSFilesystem fs, LFSFile fh, size)

	

	
littlefs.lfs.file_rewind(LFSFilesystem fs, LFSFile fh)

	

	
littlefs.lfs.file_seek(LFSFilesystem fs, LFSFile fh, off, whence)

	

	
littlefs.lfs.file_size(LFSFilesystem fs, LFSFile fh)

	

	
littlefs.lfs.file_sync(LFSFilesystem fs, LFSFile fh)

	

	
littlefs.lfs.file_tell(LFSFilesystem fs, LFSFile fh)

	

	
littlefs.lfs.file_truncate(LFSFilesystem fs, LFSFile fh, size)

	

	
littlefs.lfs.file_write(LFSFilesystem fs, LFSFile fh, data)

	

	
littlefs.lfs.format(LFSFilesystem fs, LFSConfig cfg)

	Format the filesystem

	
littlefs.lfs.fs_size(LFSFilesystem fs)

	

	
littlefs.lfs.getattr(LFSFilesystem fs, path, type, buffer, size)

	

	
littlefs.lfs.mkdir(LFSFilesystem fs, path)

	

	
littlefs.lfs.mount(LFSFilesystem fs, LFSConfig cfg)

	Mount the filesystem

	
littlefs.lfs.remove(LFSFilesystem fs, path)

	Remove a file or directory

If removing a direcotry, the directory must be empty.

	
littlefs.lfs.removeattr(LFSFilesystem fs, path, type)

	

	
littlefs.lfs.rename(LFSFilesystem fs, oldpath, newpath)

	Rename or move a file or directory

If the destination exists, it must match the source in type.
If the destination is a directory, the directory must be empty.

	
littlefs.lfs.setattr(LFSFilesystem fs, path, type, buffer, size)

	

	
littlefs.lfs.stat(LFSFilesystem fs, path)

	Find info about a file or directory

	
littlefs.lfs.unmount(LFSFilesystem fs)

	Unmount the filesystem

This does nothing beside releasing any allocated resources

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 littlefs	

 	
 	
 littlefs.context	

 	
 	
 littlefs.lfs	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	append (littlefs.lfs.LFSFileFlag attribute)

B

 	
 	block_count (littlefs.lfs.LFSConfig attribute)

 	
 	block_size (littlefs.lfs.LFSConfig attribute)

C

 	
 	cache_size (littlefs.lfs.LFSConfig attribute)

 	close() (littlefs.FileHandle method)

 	
 	context (littlefs.LittleFS attribute)

 	creat (littlefs.lfs.LFSFileFlag attribute)

D

 	
 	dir_close() (in module littlefs.lfs)

 	dir_open() (in module littlefs.lfs)

 	
 	dir_read() (in module littlefs.lfs)

 	dir_rewind() (in module littlefs.lfs)

 	dir_tell() (in module littlefs.lfs)

E

 	
 	erase() (littlefs.context.UserContext method)

 	
 	excl (littlefs.lfs.LFSFileFlag attribute)

F

 	
 	file_close() (in module littlefs.lfs)

 	file_open() (in module littlefs.lfs)

 	file_open_cfg() (in module littlefs.lfs)

 	file_read() (in module littlefs.lfs)

 	file_rewind() (in module littlefs.lfs)

 	file_seek() (in module littlefs.lfs)

 	file_size() (in module littlefs.lfs)

 	file_sync() (in module littlefs.lfs)

 	
 	file_tell() (in module littlefs.lfs)

 	file_truncate() (in module littlefs.lfs)

 	file_write() (in module littlefs.lfs)

 	FileHandle (class in littlefs)

 	flags (littlefs.lfs.LFSFile attribute)

 	flush() (littlefs.FileHandle method)

 	format() (in module littlefs.lfs)

 	(littlefs.LittleFS method)

 	fs_size() (in module littlefs.lfs)

G

 	
 	getattr() (in module littlefs.lfs)

L

 	
 	LFSConfig (class in littlefs.lfs)

 	LFSDirectory (class in littlefs.lfs)

 	LFSFile (class in littlefs.lfs)

 	LFSFileFlag (class in littlefs.lfs)

 	LFSFilesystem (class in littlefs.lfs)

 	LFSStat (class in littlefs.lfs)

 	
 	listdir() (littlefs.LittleFS method)

 	LittleFS (class in littlefs)

 	littlefs (module)

 	littlefs.context (module)

 	littlefs.lfs (module)

 	lookahead_size (littlefs.lfs.LFSConfig attribute)

M

 	
 	makedirs() (littlefs.LittleFS method)

 	mkdir() (in module littlefs.lfs)

 	(littlefs.LittleFS method)

 	
 	mount() (in module littlefs.lfs)

 	(littlefs.LittleFS method)

N

 	
 	name (littlefs.lfs.LFSStat attribute)

O

 	
 	open() (littlefs.LittleFS method)

P

 	
 	prog() (littlefs.context.UserContext method)

 	
 	prog_size (littlefs.lfs.LFSConfig attribute)

R

 	
 	rdonly (littlefs.lfs.LFSFileFlag attribute)

 	rdwr (littlefs.lfs.LFSFileFlag attribute)

 	read() (littlefs.context.UserContext method)

 	read_size (littlefs.lfs.LFSConfig attribute)

 	readable() (littlefs.FileHandle method)

 	readall() (littlefs.FileHandle method)

 	readinto() (littlefs.FileHandle method)

 	
 	remove() (in module littlefs.lfs)

 	(littlefs.LittleFS method)

 	removeattr() (in module littlefs.lfs)

 	removedirs() (littlefs.LittleFS method)

 	rename() (in module littlefs.lfs)

 	(littlefs.LittleFS method)

 	rmdir() (littlefs.LittleFS method)

S

 	
 	scandir() (littlefs.LittleFS method)

 	seek() (littlefs.FileHandle method)

 	seekable() (littlefs.FileHandle method)

 	setattr() (in module littlefs.lfs)

 	
 	size (littlefs.lfs.LFSStat attribute)

 	stat() (in module littlefs.lfs)

 	(littlefs.LittleFS method)

 	sync() (littlefs.context.UserContext method)

T

 	
 	tell() (littlefs.FileHandle method)

 	trunc (littlefs.lfs.LFSFileFlag attribute)

 	
 	truncate() (littlefs.FileHandle method)

 	type (littlefs.lfs.LFSStat attribute)

U

 	
 	unlink() (littlefs.LittleFS method)

 	
 	unmount() (in module littlefs.lfs)

 	UserContext (class in littlefs.context)

W

 	
 	walk() (littlefs.LittleFS method)

 	writable() (littlefs.FileHandle method)

 	
 	write() (littlefs.FileHandle method)

 	wronly (littlefs.lfs.LFSFileFlag attribute)

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 littlefs for Python

 		
 Usage

 		
 C-Style API

 		
 Pythonic API

 		
 Examples

 		
 Preparing a filesystem on the PC

 		
 Inspecting a filesystem image

 		
 API Documentation

 		
 littlefs module

 		
 littlefs.context module

 		
 littlefs.lfs module

_static/up.png

